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Abstract 6 

The prediction of the transport of sediments in streams is of crucial importance for many 7 

geophysical and industrial applications. Most of the available formulas for sediment transport 8 

are empirical, and apply to situations near initiation, where a few erratic particles are seen 9 

jumping and rolling over an immobile bed. Yet, they are commonly adopted for predicting 10 

massive transport of sediments, although more rigorous approaches exist. The latter make use 11 

of constitutive relations from kinetic theories of granular gases, but require the numerical 12 

integrations of complicated, non-linear differential equations; hence, discouraging people 13 

from their usage for practical purposes. Here, we propose a new explicit formula for 14 

predicting intense sediment transport that is based on kinetic theories of granular gases and 15 

incorporates in a simple, yet rigorous, way the possibility of turbulent suspension of the 16 

particles. We then show that our formula, unlike others, can quantitatively reproduce physical 17 

experiments on steady, uniform flows of natural and artificial particles and water over 18 

horizontal, movable beds taken from the literature. Our findings suggest that granular physics 19 

is now mature enough to provide practical tools in fields that were so far mainly empirically-20 

oriented. 21 
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Introduction and theory 23 

Most of researches on sediment transport has put an emphasis on the forces that the liquid 24 

component exerts on the particles, rather than on the particle-particle interactions. This is 25 

partially due to the fact that the laboratory experiments were mostly conducted, for practical 26 

reasons, at small values of water discharge, close to the inception of particle motion, where 27 

inter-particle forces are negligible. At higher values of water discharge, massive transport of 28 

sediments takes instead place, and those forces cannot be ignored. Sophisticated 29 

mathematical models, that take into account the turbulence of the liquid, the inter-particle 30 

collisions, the turbulent suspension and the mutual influence between turbulence and particle 31 

velocity fluctuations have been proposed (Jenkins and Hanes 1998; Hsu et al. 2004). They 32 

require though the numerical solutions of sets of rather complicated differential equations, for 33 

which end-users oriented codes are not available yet; this limits their appeal to audience 34 

interested in practical applications. 35 

As recently suggested (Frey and Church 2009), we use up to date findings on granular 36 

physics to provide a simple description of intense sediment transport, here defined as the 37 

massive flow of particles dominated by collisional exchange of momentum (i.e., Shields 38 

numbers higher than about four times the critical value at the inception of particle motion; see 39 

later in the text), possibly in presence of turbulent suspension. We focus, for simplicity, on 40 

the case of the transport of uniform, rigid spheres of diameter d immersed in water (with  41 

and  the water density and viscosity, respectively, and  the ratio of particle to water 42 

density) over a horizontal, plane, movable bed. The shear stress, S
*
, exerted by the water at 43 

the top of the sediments (actually, at the top of the diffuse collisional layer; see later for more 44 

details) represents the driving force of particle motion. It is evident from experiments, that the 45 

volume concentration, , of the particles increases towards the bed, while both the time-46 
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averaged velocity and the velocity fluctuations of the particles decrease (Sumer et al. 1996; 47 

Armanini et al. 2005; Capart and Fraccarollo 2011). 48 

Let us analyze, for the moment, the simpler case of dry granular flows over inclined, movable 49 

beds. Particle-particle interactions can be divided into nearly instantaneous collisions and 50 

enduring contacts (Berzi et al. 2011), with the former dominant at low to moderate 51 

concentrations. For sake of simplicity, but with sufficient accuracy, let us consider that the 52 

influence of enduring contacts is almost entirely captured by the presence of a yielding value 53 

for the ratio of shear to normal stress (the Coulomb criterion). It is customary to characterize 54 

the collisions through a coefficient of restitution, which represents the ratio of pre- to post-55 

collisional relative velocity between two colliding particles, and assume that it is constant 56 

(Goldhirsch 2003). Inclined, dry granular flows are characterized by the presence at the top of 57 

a ballistic layer, where the mean free path between two consecutive collisions is longer than 58 

the ballistic trajectory that every particle follows under the influence of gravity (Pasini and 59 

Jenkins 2005). This means that one cannot disregard the influence of external forces – in this 60 

case gravity – on the dynamics of particle-particle encounters, and the constitutive relations 61 

provided by kinetic theories of granular gases (Jenkins and Savage 1983; Garzo and Dufty 62 

1999) do not apply. When the mean free path diminishes, due to increasing in particle 63 

concentration, and is less than the length of the ballistic trajectory, kinetic theories of granular 64 

gases are able to provide a correct description of the flow (Goldhirsch 2003). In particular, 65 

when the fluctuating velocities of the particles are uncorrelated, classic kinetic theories apply 66 

(Garzo and Dufty 1999). Berzi and Jenkins (2011) named this region the diffuse collisional 67 

layer. When the concentration further increases – say greater than 0.49 for spheres (Jenkins 68 

2007) – the particle fluctuating velocities are no longer uncorrelated (Kumaran 2009) and one 69 

has to modify the classic kinetic theories to account for the diminished energy dissipation in 70 

collisions (Mitarai and Nakanishi 2007; Jenkins 2006, 2007). This region is called the dense 71 



 4 

algebraic layer in Berzi and Jenkins (2011). Below the dense algebraic layer, there is the 72 

movable bed, where the ratio of particle shear to normal stress is equal or below the threshold 73 

for having motion. 74 

Let us see now how the picture changes in presence of water. At the macroscopic scale, one 75 

has to take into account the particle-water interactions (mainly drag, lift and buoyancy) in the 76 

momentum equations for the particles, but this does not alter the above mentioned layered 77 

structure of the flow. At the microscopic scale, though, the presence of the viscous fluid 78 

damps the collisions. Hence, the value of the coefficient of restitution is no longer constant, 79 

but is a well defined monotonic function of the particle Stokes number St, i.e., the ratio of 80 

particle inertia to fluid viscous forces: it decreases when the Stokes number decreases (Joseph 81 

et al. 2001). The subsequent layered structure of sediments is represented in Fig. 1, together 82 

with a generic concentration profile. At the top, there is still the presence of a ballistic layer, 83 

although in this case the external forces that cannot be disregarded in describing the dynamics 84 

of particle-particle encounters are the drag force and the buoyancy, in addition to gravity. 85 

Below this, the diffuse collisional and dense algebraic layers are both characterized by the 86 

fact that the coefficient of restitution decreases towards the bed, given that the Stokes number 87 

is proportional to the square root of the granular temperature, T – the measure of the intensity 88 

of particle velocity fluctuations, the analog at the particle scale of the thermodynamic 89 

temperature of classic gases – that decreases approaching the bed (Armanini et al. 2005; 90 

Berzi 2011). At a certain distance  from the bed, the Stokes number is so low that the 91 

coefficient of restitution vanishes; there, the collisions are perfectly inelastic, and the mixture 92 

of sediment and water behaves as a viscous dense suspension, with an effective viscosity that 93 

depends on the concentration (Boyer et al. 2011). This is the macro-viscous layer (Berzi 94 

2011), just above the movable bed (Fig. 1). Not all the above described layers are always 95 

present in the flow. As shown by Berzi (2011), for values of S
*
 lower than a certain value, the 96 
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dense algebraic layer vanishes; on the other hand, for values of S
*
 greater than another 97 

particular value, the macro-viscous layer disappears. Also, we emphasize that the massive 98 

transport of sediments is localized in the diffuse collisional, dense algebraic and macro-99 

viscous layers, so that the additional contribution of the ballistic layer is usually negligible. 100 

This is not true, though, at the lowest values of S
*
 (see later) when the massive transport 101 

layers vanish; in that case, the sediment transport is concentrated in the ballistic layer. 102 

On the basis of the above described physical picture, we were able to obtain an analytical 103 

solution of steady, uniform transport of sediment that applies when the massive transport 104 

layers are present, but the particles are not yet suspended by turbulence (Berzi 2011). This 105 

means that the total depth h of the massive transport layers, whose expression is reported in 106 

Table 1, must be greater than one diameter, and the ratio of the fluid shear velocity at y = h, 107 

, to the uniform settling velocity of a single particle, w0, must be less than or equal 108 

to one (Jenkins and Hanes 1998). The transport formula – i.e., the particle volume flow rate 109 

per unit width, q, as a function of the fluid shear stress S
*
 – obtained by extending the work of 110 

Berzi (2011) to deal with turbulent suspension, in the limit of small values of the coefficient 111 

of collisional restitution at y = H, i.e., at the top of the dense algebraic layer (Fig. 1) – can be 112 

written as: 113 

, (1) 114 

where  is the dimensionless particle volume flow rate per unit width; 115 

eff is an effective Shields number (see later), which represents a percentage of the actual 116 

Shields number, , i.e., the dimensionless fluid shear stress at the top of the 117 

massive layers; g is the gravitational acceleration; and the coefficient  is an explicit function 118 

of eff and the set of particle properties (Table 1). The latter includes the coefficient of 119 

collisional restitution in absence of water, ; the parameter c in the expression for the particle 120 
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velocity correlation in the dense algebraic layer (Jenkins 2006, 2007); the ratio of particle to 121 

liquid density, ; the particle Reynolds number, , that explicitly 122 

depends on the particle diameter; the approximately constant value of the concentration in the 123 

dense algebraic and macro-viscous layers, ; and the yielding value of the particle stress 124 

ratio at the bed, . All the particle properties have clear physical meanings and can be easily 125 

measured, but for the parameter c, that must be inferred from experiments; nonetheless, c is 126 

of order unity and values appropriated for sand, plastic cylinders and glass spheres have been 127 

previously determined (Jenkins and Berzi 2010; Berzi 2011). The dependence of  on the 128 

effective Shields number for natural sand or gravel of different diameters (equivalently, for 129 

different value of the particle Reynolds number) in water is plotted in Fig. 2; as in Berzi 130 

(2011), we employ the following values for the particle properties: , , 131 

,  and . For diameters greater than 10 mm, corresponding to particle 132 

Reynolds numbers greater than 2500, the curves collapse onto a single one. It is worth 133 

noticing that the most used formulas for sediment transport, such as the famous one proposed 134 

by Meyer-Peter and Müller (1948) – MPM formula, from now on –, and its revised form 135 

proposed by Wong and Parker (2006) – WP formula –, but also the recent, physically-136 

sounded formula of Capart and Fraccarollo (2011) – CF formula – are characterized by a 137 

coefficient of proportionality of  with the Shields number to the power of 3/2, independent 138 

on both the Shields number, at least far from the inception of particle motion, and the 139 

properties of the particles. The literature constant values of the coefficient of proportionality 140 

are 8 (MPM formula) and around 4 (WP and CF formulas), while Fig. 2 shows a much wider 141 

interval of variation for . 142 

We introduced the effective Shields number in Eq.(1) motivated by the work of McTigue 143 

(1981), where a rigorous analysis of the influence of the turbulence on the particles in a 144 

mixture resulted in an additional term proportional to the gradient of concentration that must 145 
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be included in the particle momentum balances (see also Hsu et al. 2004). With this, the 146 

particle momentum balance in the vertical direction reads 147 

, (2) 148 

with p particle pressure, C drag coefficient and T turbulent viscosity. The prime indicates the 149 

spatial derivative along the vertical direction. We assume that the drag coefficient can be 150 

expressed in terms of the uniform settling velocity w of particles at concentration , provided 151 

that, at equilibrium (i.e., when the drag force is balanced by the buoyant weight), 152 

. (3) 153 

Both T and w are local quantities. However, we can assume that, on average, they are 154 

proportional to  (McTigue 1981) and w0, respectively. Then, taking  to be 155 

approximately linearly distributed from 0, at the top, to , at y = H, 156 

. (4) 157 

where  is a coefficient of order unity. Eq. (4) shows that the collisional pressure decreases 158 

when the turbulent suspension is present. The analytical solution resulting in Eq.(1) and 159 

Table 1 is based on the determination of the ratio of particle shear stress to particle pressure 160 

in the dense layers of Fig. 1 (dense algebraic and macro-viscous layer). There, the 161 

dimensionless particle shear stress equals the Shields number, because the turbulence is likely 162 

to be suppressed (Berzi 2011). Hence, decreasing the particle pressure by the factor of Eq. (4) 163 

is equivalent to increasing the Shields number by the inverse of the same factor. We therefore 164 

introduce the effective Shields number as 165 

. (5) 166 
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The factor in Eq.(5) has been slightly modified with respect to that in Eq.(4) to ensure that eff 167 

coincides with  for  equal to w0 (i.e., when the turbulent suspension vanishes in 168 

the diffuse collisional layer). 169 

As already mentioned, the minimum Shields number for which the transport formula (1) 170 

holds is that for which the depth of the massive transport layers is at least one diameter. From 171 

Table 1, and the idea that at such low values of the Shields number the coefficient of 172 

collisional restitution at the top of the dense layers eH approximately vanishes (Berzi 2011), 173 

as well as the turbulent suspension, this implies . For sand, this minimum 174 

value is roughly 0.2, i.e., about four times the critical value for the inception of motion. On 175 

the other hand, the maximum value of the actual Shields number for the validity of Eq.(1) is 176 

that for which the turbulent suspension is so strong that the collisional pressure at the top of 177 

the dense layers vanishes (inception of fully suspended load). Hence, from Eq.(4), 178 

. 179 

Comparison with experiments and conclusions 180 

We now test Eq.(1) against the experimental results reported by Nnadi and Wilson (1992) on 181 

the flows of 0.7 mm sand in water (Fig. 3). Those experiments possess some unique features 182 

that make them perfect to test sediment transport formulas: (i) they have been performed with 183 

natural material, hence satisfying those skeptical about the use of unrealistic artificial 184 

particles in laboratory experiments; (ii) they have been obtained on horizontal, plane movable 185 

bed, so that additional complications such as gravity in the flow direction and bedforms 186 

(Wong and Parker 2006) are ruled out; (iii) the experimentally investigated values of the 187 

Shields number, in the interval between 0.8 and 8, pretty much cover the range of most 188 

  
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interest for practical applications in Hydraulics (for instance, they are associated with the 189 

intense sediment transport occurring during floods). 190 

The turbulent suspension is not expected to play a role for , given that the single 191 

particle, uniform settling velocity for 0.7 mm sand is about 10 cm/s (Abrahams 2003). 192 

Indeed, Fig.3 shows that Eq. (1) without turbulent suspension, i.e., with eff = , reproduces 193 

the experiments up to a value of the Shields number slightly above one, while over-predicts 194 

the transport rate for larger values of . When we use Eq.(5) to evaluate eff, with  equal to 195 

0.6, the quantitative agreement of Eq.(1) with the experiments is remarkable (Fig. 3), even at 196 

values of  slightly greater than that for which Eq.(1) is valid (about 6.5 in the case of 197 

0.7 mm sand). Transport formulas other than Eq.(1) constantly under-predict the 198 

experimental data (Fig. 3); the better performance of the MPM formula with respect to both 199 

WP and CF expressions is likely to be fortuitous, given that the analysis of Wong and Parker 200 

(2006) proved that it was based on erroneous interpretation of the experimental results. 201 

Fig. 4 shows the comparison between measured (Nnadi and Wilson 1992) and predicted 202 

values of dimensionless particle flow rate per unit width of artificial particles and water. The 203 

experiments were performed using mono-dispersed Bakelite beads of two different diameters 204 

and water. This allows to investigate the role of the particle Reynolds number on the particle 205 

transport rate; with  = 1.56, R = 46 and 64, when d = 0.67 and 1 mm, respectively. To plot 206 

the theoretical curves of Fig. 4, we have employed , ,  and , as 207 

appropriated for PVC particles (Berzi 2011);  = 0.6, as for sand, and w0 equal to 7 cm/s 208 

(Ferguson and Church 2004). As predicted by the theory (Berzi 2011), at lower values of the 209 

Reynolds number correspond higher values of , for a given Shields number (Fig.4). Once 210 

again, the agreement between the transport formula (1) and the experiments is notable. 211 

We conclude that the proposed formula for predicting intense sediment transport is simple 212 

enough to be used for practical purposes, yet rigorous enough, being based on kinetic 213 

 1 

 =0.6  =0.5c  =0.55  =0.50
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theories, and granular physics in general, that there is no need for additional tuning 214 

parameters; it also has a superior capability of reproducing experiments. The limits of the 215 

approach regard, as already mentioned, the prediction of the sediment transport at (i) Shields 216 

numbers close to the inception of particle motion (say less than four times the critical value), 217 

for which the constitutive relations of kinetic theories do not apply; (ii) Shields numbers 218 

larger than the inception of fully suspended sediment transport, at which the collisional 219 

pressure vanishes (about 7 for 0.7 mm sand). 220 

Notation 221 

The following symbols are used in the paper: 222 

 223 

 c = parameter in the expression for the particle velocity correlation; 224 

 C = drag coefficient; 225 

 d = particle diameter; 226 

 eH = coefficient of collisional restitution at the top of the dense algebraic layer; 227 

 g = gravitational acceleration; 228 

 h = total depth of the diffuse collisional, dense algebraic and macro-viscous layers; 229 

 H = total depth of the dense algebraic and macro-viscous layers; 230 

 k = particle stress ratio at the top of the dense algebraic layer; 231 

 p = particle pressure; 232 

 q = particle volume flow rate per unit width; 233 

 R = particle Reynolds number; 234 

 S
*
 = water shear stress at the top of the diffuse collisional layer; 235 

 St = Stokes number; 236 

 T = granular temperature; 237 

 w = uniform settling velocity of particles at concentration ; 238 
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 w0 = uniform settling velocity of a single particle; 239 

 x = coordinate in the flow direction; 240 

 y = coordinate in the direction perpendicular to the bed; 241 

  = yielding value of the stress ratio at the bed; 242 

  = depth of the macro-viscous layer; 243 

  = coefficient of collisional restitution in dry conditions; 244 

  = dimensionless particle volume flow rate per unit width; 245 

  = molecular viscosity; 246 

  = turbulent viscosity; 247 

  = particle stress ratio at the top of the macro-viscous layer; 248 

  = concentration; 249 

  = approximately constant concentration in the dense layers; 250 

  = Shields number; 251 

 eff = effective Shields number; 252 

  = water density; 253 

  = particle density over water density; 254 

  = material coefficient; 255 

  = coefficient in the transport formula; 256 

 i = auxiliary coefficient (with i = 1, 2, 3). 257 
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Figure 1. Layered structure of sediment transport over a horizontal movable bed and associated 

concentration profile. 

Figure 2. Coefficient  of Eq.(1) as function of the effective Shields number for sand/gravel of different 

diameters in water. 

Figure 3. Experimental (open circles, after Nnadi and Wilson 1992) data of dimensionless particle volume 

flow rate per unit width as function of the Shields number for 0.7 mm sand in water. The lines represent the 

predictions of different formulas for sediment transport: solid black line, Eq.(1); dashed black line, Eq.(1) 

without including turbulent suspension (i.e., eff = ); solid gray line, MPM formula; dot-dashed gray line, 

WP formula; dashed gray line, CF formula. 

Figure 4. Experimental (symbols, after Nnadi and Wilson 1992) and theoretical (lines) dimensionless 

particle volume flow rate per unit width as function of the Shields number for 1 mm (open circles and solid 

line) and 0.67 mm (open squares and dashed line) Bakelite beads in water. 
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